\(\int \frac {(a+a \cos (c+d x)) (A+C \cos ^2(c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [1166]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 205 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a (9 A+7 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 a (7 A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a C \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a C \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (9 A+7 C) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (7 A+5 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

[Out]

2/9*a*C*sin(d*x+c)/d/sec(d*x+c)^(7/2)+2/7*a*C*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/45*a*(9*A+7*C)*sin(d*x+c)/d/sec(
d*x+c)^(3/2)+2/21*a*(7*A+5*C)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/15*a*(9*A+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(
1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/21*a*(7*A+5*C)*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^
(1/2)/d

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {4306, 3113, 3102, 2827, 2715, 2720, 2719} \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a (9 A+7 C) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (7 A+5 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a (7 A+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a (9 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 a C \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a C \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(2*a*(9*A + 7*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (2*a*(7*A + 5*C)*Sq
rt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a*C*Sin[c + d*x])/(9*d*Sec[c + d*x]
^(7/2)) + (2*a*C*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*a*(9*A + 7*C)*Sin[c + d*x])/(45*d*Sec[c + d*x]^(3
/2)) + (2*a*(7*A + 5*C)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3113

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
 + 3))), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c*(m + 3) + b*d*(C*(m + 2) + A*(
m + 3))*Sin[e + f*x] - (2*a*C*d - b*c*C*(m + 3))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C,
m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx \\ & = \frac {2 a C \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {1}{9} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \cos ^{\frac {3}{2}}(c+d x) \left (\frac {9 a A}{2}+\frac {1}{2} a (9 A+7 C) \cos (c+d x)+\frac {9}{2} a C \cos ^2(c+d x)\right ) \, dx \\ & = \frac {2 a C \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a C \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{63} \left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \cos ^{\frac {3}{2}}(c+d x) \left (\frac {9}{4} a (7 A+5 C)+\frac {7}{4} a (9 A+7 C) \cos (c+d x)\right ) \, dx \\ & = \frac {2 a C \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a C \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{7} \left (a (7 A+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{9} \left (a (9 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \cos ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {2 a C \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a C \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (9 A+7 C) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (7 A+5 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{21} \left (a (7 A+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{15} \left (a (9 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 a (9 A+7 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 a (7 A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a C \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a C \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (9 A+7 C) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (7 A+5 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.39 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.00 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (120 (7 A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-56 i (9 A+7 C) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (1512 i A+1176 i C+30 (28 A+23 C) \sin (c+d x)+14 (18 A+19 C) \sin (2 (c+d x))+90 C \sin (3 (c+d x))+35 C \sin (4 (c+d x)))\right )}{1260 d} \]

[In]

Integrate[((a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(a*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*(120*(7*A + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] -
(56*I)*(9*A + 7*C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c
 + d*x))] + Cos[c + d*x]*((1512*I)*A + (1176*I)*C + 30*(28*A + 23*C)*Sin[c + d*x] + 14*(18*A + 19*C)*Sin[2*(c
+ d*x)] + 90*C*Sin[3*(c + d*x)] + 35*C*Sin[4*(c + d*x)])))/(1260*d*E^(I*d*x))

Maple [A] (verified)

Time = 8.38 (sec) , antiderivative size = 406, normalized size of antiderivative = 1.98

method result size
default \(-\frac {2 \sqrt {\left (-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a \left (-1120 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2960 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-504 A -3152 C \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (924 A +1792 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-336 A -408 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-189 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+75 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{315 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(406\)
parts \(\text {Expression too large to display}\) \(798\)

[In]

int((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/315*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(-1120*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*
c)^10+2960*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+(-504*A-3152*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(
924*A+1792*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-336*A-408*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+1
05*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-189*A
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+75*C*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*C*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.03 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (9 \, A + 7 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (9 \, A + 7 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (35 \, C a \cos \left (d x + c\right )^{4} + 45 \, C a \cos \left (d x + c\right )^{3} + 7 \, {\left (9 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2} + 15 \, {\left (7 \, A + 5 \, C\right )} a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{315 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/315*(-15*I*sqrt(2)*(7*A + 5*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 15*I*sqrt(2)*(7
*A + 5*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*I*sqrt(2)*(9*A + 7*C)*a*weierstrass
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*(9*A + 7*C)*a*weierstras
sZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(35*C*a*cos(d*x + c)^4 + 45*C*a*co
s(d*x + c)^3 + 7*(9*A + 7*C)*a*cos(d*x + c)^2 + 15*(7*A + 5*C)*a*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c))
)/d

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=a \left (\int \frac {A}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {A \cos {\left (c + d x \right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {C \cos ^{3}{\left (c + d x \right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)**2)/sec(d*x+c)**(3/2),x)

[Out]

a*(Integral(A/sec(c + d*x)**(3/2), x) + Integral(A*cos(c + d*x)/sec(c + d*x)**(3/2), x) + Integral(C*cos(c + d
*x)**2/sec(c + d*x)**(3/2), x) + Integral(C*cos(c + d*x)**3/sec(c + d*x)**(3/2), x))

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)/sec(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)/sec(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\left (a+a\,\cos \left (c+d\,x\right )\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x)))/(1/cos(c + d*x))^(3/2),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x)))/(1/cos(c + d*x))^(3/2), x)